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ABSTRACT

Characteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the

Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using

local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM)

precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two

peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the

middle of summer corresponding to theBSISO.Comparing the fractional variance indicates that the BSISO is

more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave

radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMMera (1979–

98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical

intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two

leading EOFs as a function of day of the year. A real-time version that approximates the PII is further

developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time

PII index may be used to diagnose precipitation in the subseasonal forecasts.

1. Introduction

Tropical intraseasonal oscillations (ISO), including

the Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972; Xie et al. 1963; Li et al. 2018) and

boreal summer intraseasonal oscillation (BSISO; e.g.,

Yasunari 1979; Krishnamurti and Subrahmanyam 1982),

consist of complex patterns of circulation, clouds, and

rain. They are the primary modes of tropical weather at

intraseasonal time scales and exerting far-reaching in-

fluence on global weather and climate.

For many practical applications, it is important to

extract the MJO/BSISO signals from gridded data, for

example, reanalysis products and/or interpolated ob-

servations. An index is a fundamental tool for quanti-

tative expression of tropical ISOs. It serves to express

ISO activity in simple numbers that efficiently abstracts

spatial and temporal patterns and variations. Indexing

MJO/BSISOmakes it feasible to quantify the amplitude

and locations of the ISOs in observations and forecasts,

which is important for the proper physical interpretation

of MJO/BSISO life cycles. Indexing the ISO also allows

study of their global impact. Many authors have found

that it is informative to index MJO based on bandpass-

filtered variables (e.g., Hendon and Salby 1994;Maloney

and Hartmann 1998; Ding et al. 2010). However, a lim-

itation of this approach at that time is that it was not

clear how one could use the index from bandpass-

filtered data to track ISO in real time because data in

the future are required but such data are unavail-

able for bandpass filtering in such circumstances.

One major milestone in addressing this issue was

the development of the Real-Time Multivariate MJO

(RMM) index (Wheeler and Hendon 2004), which

enabled real-time monitoring and forecasting of the

MJO. Despite its major advantages, subsequent

careful examination of the RMM revealed some lim-

itations, for example, mixing MJO with other tropi-

cal wave signals, for example, Kelvin and/or Rossby

waves (Roundy et al. 2009), and underrepresentation

of convection (Straub 2013; Ventrice et al. 2013; Liu

et al. 2016).

The bimodal ISO index developed by Kikuchi et al.

(2012) and the outgoing longwave radiation (OLR)-

based MJO index (OMI) by Kiladis et al. (2014, here-

after referred to as K14) were developed to address

this deficiency in RMM. Both are capable of tracking

tropical convection associated with MJO based onCorresponding author: Shuguang Wang, wangsg@outlook.com
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OLR, which is a measure of cloudiness and has often

been used as a surrogate for convection. Because OLR

is directly measured by satellites at the global scale, it

is considered highly reliable and perhaps the most ac-

curate long-term climate record of tropical convection.

A key distinction between RMM and OMI is that

RMM applies latitudinal averages and it ignores the

meridional structure of the MJO, while OMI includes

meridional structures near the equator. The inclusion

of meridional structures likely helps OMI better dif-

ferentiate ISO from Kelvin waves, which are usually

symmetrical with respect to each sides of equator.

While OMI was designed to track the MJO,Wang et al.

(2018) further showed that OMI is capable of tracking

BSISO and, therefore, OMI offers a unified treatment

of the MJO and BSISO, which is similar to the bimodal

treatment of ISO in Kikuchi et al. (2012).

One very useful application of OMI is that it is suit-

able for subseasonal forecasts (Wang et al. 2019).

There are several important differences between

RMM and OMI besides the variables used. The first is

that the two methods follow different approaches in

constructing a real-time version index: OMI is based

on the empirical orthogonal function (EOF) analy-

sis of bandpass-filtered data and projecting real-time-

filtered OLR onto these EOFs further removes noise,

while RMM seeks to identify EOFs from anomalies

computed using a window-processed technique. Both

approaches provide a reasonable approximation of

MJO in real time. Nevertheless, OMI offers a quan-

titative measure of this degree of approximation; that

is, the correlation between real-time and filter-based

index is ;0.9, while RMM provides no such measure.

Despite its advantages, one limitation of the OMI is

that it is not straightforward to relate OLR at the top

of the atmosphere to precipitation at the surface.

Arguably, the most impactful aspect of the tropical

intraseasonal oscillation is that it brings a significant

amount of rain to the surface at low latitudes. Diabatic

heating associated with precipitating processes during

microphysical phase transformation generates Rossby

waves. Propagation of these Rossby waves further

influences mid- and high-latitude weather. Quantita-

tively characterizing, understanding, and predicting

rainfall associated with ISO is of significant interest

in a wide range of applications. Nevertheless, mea-

suring precipitation associated with ISO remains a

significant challenge. Several authors have begun to

address this issue via Lagrangian feature tracking of

precipitation during the MJO events (Kerns and Chen

2016; Zhang and Ling 2017). However, there is no

quantitative forecast of MJO/BSISO rainfall in op-

eration to date.

The goal of this study is to fill this knowledge gap. We

develop a simple index to measure MJO/BSISO daily

precipitation based on the EOF analysis. This index

identifies MJO/BSISO temporal and spatial patterns

that are graphically interpretable. Our approach broadly

follows K14 for cloudiness, and we improve upon K14 in

two important aspects: improving consistency and

reducing noise.

The rest of this article is organized in the following

sections. Section 2 introduces the data, as well as the

data preparation for precipitation anomalies, and de-

scribes the local EOFmethod. Section 3 contains results

from the EOF analysis and discusses some basic prop-

erties of the precipitation index derived from the EOF

analysis and its application to subseasonal forecasts.

Section 4 summarizes this study.

2. Data and methodology

a. TRMM precipitation and preprocessing

We use the high-quality (HQ) microwave estimate of

precipitation data from the Tropical Rainfall Measuring

Mission (TRMM), version 3B42 7A, product (Huffman

et al. 2007; Huffman and Bolvin 2013) for the analysis.

The TRMM 3B42 HQ precipitation data are available

from 1998 to the present. It is a gridded dataset with a

horizontal resolution of 0.258. We bin this data into

2.58 resolution in standard longitude and latitude co-

ordinates (08, 2.58, 58, . . . , 357.58E; . . . ,258N,22.58N, 08,
2.58N, 58N, . . .). The daily average is obtained by binning

the 3-hourly data. The 2.58 HQ data before 2015 (when

TRMM was decommissioned) are used for the EOF

analysis described below. For comparison, we also use

the NOAA interpolated daily 2.58-resolution OLR

dataset (Liebmann and Smith 1996) from 1979 to 2017.

We perform EOF analysis on intraseasonal anomalies

of precipitation and OLR. Similar to the computation of

the OLR anomalies in K14, the following three steps are

used to compute the precipitation and OLR anomalies

from the 2.58 daily TRMM-HQ precipitation prior to

the EOF analysis. 1) Remove the climatology and the

first three harmonics to obtain the daily precipitation

anomalies. 2) Apply a 20–96-day bandpass filter to

precipitation anomalies from step 1 with a 139-weight

nonrecursive Lanczos filter. The filtfilt operation, a

function in Python and MATLAB, is used to ensure

zero phase shift. 3) Remove the mean and westward

propagation components (keeping wavenumbers from

1 to 72) by transforming the data into the wavenumber-

frequency space, setting the corresponding Fourier

coefficients to 0, and transforming back to the physical

space. This last step is referred to as the eastward filter.

Steps 1 and 2 are applied to data at each grid point; that
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is, these operations are independent of latitude and

longitude. Step 3 is applied to data at each latitude

circle. For the purpose of extracting EOFs, step 1 is not

essential because time filtering in step 2 already re-

moves low-frequency components. In fact, the EOF

patterns remain nearly the same even if step 1 is skip-

ped. It is nevertheless useful for making the real-time

index, as discussed in section 3c.

b. Local EOF analysis

Our approach of using an EOF analysis of precipita-

tion broadly follows that of K14 for OLR. The resultant

EOFs are functions of the day of the year (DOY). As

they are local in DOY (but covering the global equa-

torial regions in space), we refer to this as ‘‘local EOF

analysis’’ to distinguish itself from conventional EOF

analysis. We improve upon K14 in two aspects: noise

reduction and improving consistency for interpretabil-

ity. We apply the super-Gaussian function for noise re-

duction and apply rotation to the leading EOFs to make

them more interpretable. We discuss the former in this

section and the rotation operation in a later section.

The local EOF analysis requires appropriate selection

of neighboring daily data centering on the current DOY.

For this, we apply a super-Gaussian function for each

DOY, which is written as

F̂(t,T)5F(t) exp

"
2

�
t2T

W

�4
#
, (1)

where F is the gridded time series data (bandpass-fil-

tered OLR or precipitation in this study, dependence

on space is ignored for brevity); F̂(t, T) is the window-

processed data as the input to the EOF analysis; T

denotes DOY, ranging from 0 to 364; and W repre-

sents the half-width and indicates the rate of decay

to zero. The super-Gaussian window is used based

on our intuition that the time series data away from

current DOY should have less influence on the co-

variance structure at that T. The regular Gaussian

function (with the exponent of 2) is not used here

because it falls off too slowly. The resultant yearly

data chunk for the same DOY has a smooth transition

between the chunks, which are concatenated together

and fed to the EOF analysis. The super-Gaussian

window approach differs from K14 in that K14 se-

lects data 60 days before and after the current DOY.

This is equivalent to applying the boxcar func-

tion, which produces discontinuity between yearly

data chunks (e.g., the transition from one yearly data

chunk to another is not continuous). Application of the

super-Gaussian function avoids such discontinuity and

leads to a reduction in the noise in the eigenvalues of

precipitation anomalies. The test for OLR is discussed in

the appendix.

The half-width W is a free parameter. Consider two

limits: if W is too small (e.g., 30 days or less), the sample

size is not sufficient to yield stable EOFs for intraseasonal

oscillation, leading to noisy eigenvalues; if W is too large,

the dependence on DOY gradually decreases. We choose

to use W 5 60 after some initial tests. Figure 1 shows the

super-Gaussian and boxcar functions as a function of time.

TheEOFs are not sensitive to the exact values ofW, as also

found in K14, indicating that the method is robust overall.

The DOY-dependent local EOF analysis for each T

may be written in the standard singular value de-

composition (SVD) form as

F̂(t,T)5ULVT , (2)

whereU is the orthonormal spatial empirical function in

each column, L is a diagonal matrix with each singular

value in the diagonal entry, V represents orthonor-

mal temporal function and each column of V is often

termed the principal component time series, and the

superscript T indicates matrix transpose. Following the

convention, the spatial modes are referred to as em-

pirical orthogonal functions. One problem with SVD is

that the sign of eigenvector U is indefinite. We choose

the sign to achieve the maximum pattern correlation

between the local EOFs at two adjacent DOYs in order

tomaintain continuity at neighboringDOY.An analogy is

often made between the EOFs and the normal modes of

the boundary value problems. By this heuristic argument,

applying a super-Gaussian function ensures that each

FIG. 1. The boxcar vs super-Gaussian function as a function of days.

Half window size W is 60 days.
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yearly data chunk has consistent boundary conditions

(zeros), which reduces noise. By convention, the principal

component time series V from EOF analyses are often

used as the index for MJO/BSISO (e.g., Wheeler and

Hendon 2004), but this is not the case for the OMI index

or the precipitation index discussed below.As a result, the

use of a super-Gaussian function window does not artifi-

cially change the amplitude of the precipitation index.

3. Results

a. Two-dimensional EOFs: A reference case

We start with a two-dimensional (2D) EOF analysis of

precipitation anomalies. This reference case character-

izes the symmetric component of the ISOs through the

EOF analysis of the equatorial precipitation anoma-

lies averaged between 158S and 158N using daily 2.58
TRMM-HQ data as described above (section 2a). The

latitude range is used following Wheeler and Hendon

(2004) for the RMM. The symmetric and antisymmetric

components for variable Z at latitude f are defined as

[Z(f) 1 Z(2f)]/2 and [Z(f) 2 Z(2f)]/2, respectively.

The latitudinal average eliminates meridional propaga-

tion and, hence, greatly reduces the distinction between

MJO and BSISO. We apply the 20–96-day bandpass

filter and eastward filter to the 2D equatorial pre-

cipitation anomalies as a function of time and longitude.

These precipitation anomalies are used for the EOF

analysis (no DOY dependence).

Figure 2 shows the structure of the two leading EOFs

as a function of longitude. The first EOF features a bi-

polar structure of precipitation with two seesaw centers

of action in the eastern Indian Ocean and the western

PacificOcean. EOF2 features amonopole structurewith a

primary center located at the Maritime Continent. This

EOF structure represents canonical patterns of eastward-

propagating MJO as identified in winds or OLR in many

previous studies. The explained variance of these two

leading EOFs is ;21% each and they are well separated

from the rest eigenmodes. These two EOFs are evidently

inseparable from each other (North et al. 1982), indicating

that these eigenvalues/eigenvectors are degenerate.While

the principal time series can also be used for indexing the

symmetric component of the ISO precipitation signature,

we consider that this case establishes a reference for the

3D EOF analysis in the next section that offers a more

complete picture of the ISOs.

b. Leading EOFs of TRMM equatorial precipitation
anomalies

The local EOF analysis is further applied to TRMM-

HQ precipitation anomalies in the equatorial area

(208S–208N). The latitude range is larger than the 2D

EOF analysis (158S–158N) in the preceding section, and

it is chosen followingK14 for OLR. Figure 3a shows that

this EOF analysis identifies two leading EOFs that are

well separated from the rest modes for all DOY. The

fractional explained variance (EV) of these two EOFs

is identical at all DOY to numerical precision as a result

of eastward filtering. The explained variances show

two peaks in T: one in midwinter and the other in mid-

summer. The peak EV of the first EOF pair is 21%

(10.5% each) at DOY 45 (15 February) and 30% (15%

each) at DOY 212 (1 August in a nonleap year). These

EV values are lower than that for OLR (Fig. A1), which

are;18% and;17% in the two seasons, partly because

OMI uses a narrow band (30–90 days). If the same 30–

90-day band is used, the EV increases to 15% and 20%

in winter and summer, respectively. Nevertheless, we

use this slightly broader band to maintain consistency

with the ISO index described later. A serious problem

with these eigenmodes is that the symmetric structures

(the latitudinal mean) of these first EOFs vary rapidly

as a function of DOY (Figs. 3b,c), indicating that they

are not stable through the year. This is caused by ei-

genvalue degeneracy: the first EOF pair is nearly iden-

tical for all DOY, and the eigenvectors associated with

degenerate eigenvalues are not unique. Because of this

nonuniqueness, they are not always in pace and are

significantly different from those identified in Fig. 2. The

rapid variation makes it difficult to unambiguously link

the phases with geographical regions at all DOYs.

We address the difficulty of physical interpretation by

using the properties of eigenvalue degeneracy. It is well

known that all linear combinations of these degen-

erated eigenvectors are equally valid matrix solutions.

FIG. 2. Zonal structure of the two leading 2D EOFs from filtered

equatorial precipitation summed between 158S and 158N (solid)

and latitudinal sum of 3D precipitation EOFs after rotating the

leading EOFs (dashed).
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We apply a rotation operation—a special form of

linear transformation—to the degenerate eigenvectors.

Specifically, we rotate the first two EOFs by applying

a rotation matrix with angle u to the degenerated

eigenvector pair (EOF1, EOF2), which may be written

in matrix form as

�
EOF10

EOF20

�
5

�
cos u

sin u

2sin u

cos u

��
EOF1

EOF2

�
, (3)

where the prime indicates the eigenvector after rotation.

The rotation angle u is a free parameter and there is no

restriction on u mathematically. On the other hand, it is

crucial to maintain consistency in the symmetric structures

for all the DOY for the sake of physical interpretation.

We match the symmetric structure of rotated EOFs [left

side of Eq. (3)]. For this purpose, we select a value of

u that broadly places the center of convection in the Indian

Ocean following the convention established by Wheeler

andHendon (2004). Specifically, for each DOY, we seek a

u that maximizes the latitudinal average of one arbitrary

EOF at longitudeF. This is achieved by rotating EOFs

for u with a 18 increment for u within [2p, p) using

Eq. (3), and searching the EOF that maximizes at F in

its symmetric structure.

The above rotation operation differs from the ca-

nonical rotatedEOF (REOF) technique discussed in the

literature (Richman 1986). The REOF technique ap-

plies rotation to a number of EOFs and the exact

number of EOFs subject to rotation is empirically de-

termined. A consequence of rotation is that REOFs do

not preserve orthogonality in the spatial modes and

principal components simultaneously (Jolliffe 1995).

Our method avoids this deficiency as we only apply the

rotation to eigenvectors associated with the degenerate

eigenvalue pair. As both the rotation matrix and the

spatial basis are orthonormal, the rotated EOFs remain

orthonormal and the principal time series are kept or-

thogonal. The rotation operation does not change ei-

ther the reconstructed patterns from projection to

these EOFs or the total explained variance by the two

degenerated modes. The rotation operation allows us

to achieve better interpretability without sacrificing

mathematical properties of the original EOFs.

As stated earlier, F is determined to match the sym-

metric structure of rotated EOFs. We chose a F that

minimizes the zero-lag correlation between the two time

series derived by projection of the filtered precipitation

anomalies onto the rotated EOFs, as discussed in detail

in the next section. For the discussion below, we useF5
67.58, that is, in the Indian Ocean.

A time–longitude diagram of the symmetric and anti-

symmetric components is shown in Fig. 4. The symmetric

FIG. 3. (a) Explained variance as a function of the day of the

year for the first four EOFs derived from the TRMM-HQ 2.58
daily precipitation data (208S–208N). Solid curves show EOF1;

shading is the uncertainty range of EOF1 derived from the

North’s test, and circles indicate EOF2 every 10 days. Note that

explained variances of EOF2 are nearly identical to EOF1 with

the relative error being 1023. (b),(c) Symmetric structures of

EOF1 and EOF2.
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structures of EOF1 (Fig. 4a) show a monopole structure

with enhanced rainfall in the Maritime Continent.

These patterns persist throughout the year with little

disruption except for some weak seasonal variations.

The symmetric structures of EOF2 (Fig. 4b) show a

dipolar structure with enhanced rainfall in the Indian

Ocean and suppressed rainfall in the western Pacific

Ocean. The zonal structure may also be compared

with the result from the 2DEOF. The dashed curves in

Fig. 2 are the latitudinal sum of the first two EOFs.

The structure closely matches that from the 2D EOFs,

indicating that the symmetrical structure of the pre-

cipitation anomalies is preserved in the 3D local EOF

analysis. The antisymmetric components show a sig-

nificant seasonal contrast (Figs. 4c,d). The spatial

patterns of rotated EOFs [Eq. (3)] at T 5 0, 50, 100, . . . ,

300 days are further illustrated in Fig. 5 (T 5 0 corre-

sponds to 1 January). Rain EOFs in the Maritime

Continent at T 5 0 and 50 days are centered south of

the equator, similar to the reference case. The T 5
140–300-day patterns show a northwest–southeast-

tilted structure, indicating the BSISO. The pattern at

FIG. 4. (a),(b) Symmetric and (c),(d) antisymmetric components (158S–158N) of the first two EOFs from the

TRMM-HQ precipitation anomalies.
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T 5 100 days shows structures that appear to be a

blend of the classical MJO and BSISO.

c. Precipitation index for tropical intraseasonal
oscillation

The precipitation index for the ISOs described below

is based on the rotated EOFs. Instead of projecting

eastward precipitation anomalies onto the rotated

EOFs, we follow K14 and keep all the westward and

mean components in the 20–96-day bandpass-filtered

TRMM daily data (the non-HQ version) from 1998 to

2018 for projection. The resultant two time series are

normalized by the respective standard deviation. The

normalized time series are then used as the precipitation

FIG. 5. Spatial patterns of (left) EOF1 and (right) EOF2 from TRMM-HQ (208S–208N) on seven different days of

the year: (top to bottom) 0, 50, 100, . . . , and 300.
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index for the ISOs. Because of the addition of the

westward and mean components, the two daily time

series are not orthogonal in general, but the deviation

from orthogonality is minor, since the westward and

mean components contribute amuch smaller variance to

the total variance than the eastward components, as we

will see from the cross correlation between the two later.

We further develop a real-time version of the

precipitation-based index for tropical intraseasonal

oscillation (PII). The key consideration is that the

real-time version avoids using bandpass filtering over

time, which tends to cause difficulty at the leading

edges of the precipitation time series. Following

Wheeler and Hendon (2004), Kikuchi et al. (2012),

and K14, the precipitation anomalies are computed

by removing the first three harmonics of the mean

seasonal cycle and the time mean at individual grid

points. Then the precipitation anomalies are pro-

cessed using a time-window technique and further

projected onto the rotated precipitation EOFs. Spe-

cifically, the mean of the previous 40 days is first

subtracted from the precipitation anomalies; and then

the latter are smoothed by using a 9-day running av-

erage and tapered toward the end of the time series as

in K14. Real-time PII (rPII) is obtained by projecting

the rain anomalies onto the two spatial EOF patterns

of 20–96-day eastward-filtered and rotated EOFs, and

further normalized by the respective standard de-

viation of each time series (Fig. 4). The 40-day aver-

age is used to achieve the maximum correlation

between PII and its real-time counterpart, which is

;0.9 across all the seasons.

For illustration, we examine the PII index for the

MJO event observed during the Dynamics of the

Madden–Julian Oscillation (DYNAMO) field cam-

paign during the last 3 months of 2011 (Zhang 2013;

Yoneyama et al. 2013; Sobel et al. 2014; Wang et al.

2015, 2016). The bandpass-filtered precipitation

anomalies are averaged between 158S and 158N from

1 October to 31 December 2011. Figure 6a indicates

that convection/precipitation anomalies associated

with this MJO event started in the Indian Ocean in

the middle of October 2011 (Yoneyama et al. 2013;

Sobel et al. 2014; Wang et al. 2015, 2016). Figure 6b

shows the phase diagram of PII during this period, and

the real-time version is shown in Fig. 6c. Both PII and

rPII are able to capture the initiation and eastward

propagation of this MJO event. The pattern of PII in

the phase diagram is broadly similar to the OMI index

(Fig. 6c of K14) as they both characterize the same

phenomena but different aspects. For comparison, the

OMI and RMM index during the same period are

shown in Figs. 6d and 6e, respectively. OMI and PII

are comparable in October and November to some

degree, and both differ substantially from RMM.

The similarity among these three indices may be

quantified with the bivariate correlation in the boreal

winter (December to March) and summer (June to

September) seasons from 2000 to 2014, as summarized

in Table 1. The maximum correlation between PII and

OMI in winter is 0.74 with PII leading by 4 days, and it

is 0.88 in summer with PII leading by 1 day. PII and

OMI are well correlated in the summer season, but less

so in the winter season. The correlation between PII

and RMM is notably less: 0.60 at 5-day leads in sum-

mer, and 0.55 at 4-day leads.

Figure 7a shows that the correlation coefficient be-

tween the two values of PII (PII-1 and PII-2) from

1998 to 2017 is approximately orthogonal at day 0, and

FIG. 6. (a) Reconstructed precipitation anomalies averaged

between 158S and 158N (solid: 1 mmday21; dashed:21mmday21)

and bandpass-filtered precipitation anomalies (shading). (b) Phase

diagram of precipitation index from 1 October to 31 Dec 2011 (the

DYNAMO case). (c)–(e) As in (b), but for the real-time version,

OMI, and RMM, respectively.
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reaches ;0.7 at day 9, which is roughly a quarter of the

total period of the ISO identified from the EOF analysis.

The PII-1 and PII-2 correlation coefficient drops slightly

in winter, which is likely due to there being lower frac-

tional variance in winter (Fig. 2a). The real-time PII

shows a similar structure in the lead–lag correlation,

although the peak value is lower (0.6) at similar lead–lag

days (9) compared to PII because of increased noise.

d. Properties of the precipitation index

Figure 8 shows the structure of the bandpass-filtered

precipitation anomalies composited upon the eight PII

phases, computed as arctan(2PII2/PII1), in boreal winter

(December to March) and summer (June to September)

seasons, respectively, from 1998 to 2018. The composite is

computed on the days when the amplitude of the PII index

is greater than 1. The left column of Fig. 8 shows that

the winter intraseasonal precipitation life cycle, cor-

responding to the canonical MJO. The life cycle prog-

resses eastward from the its initialization in the Indian

Ocean (phases 1 and 2), to the eastern Indian Ocean in

phase 3 where it strengthens, to the Maritime Conti-

nent (phases 4 and 5) where it achieves the maximum,

further to the intertropical convergence zone (ITCZ)

and South Pacific convergence zone (SPCZ) during

phases 5–6, where it bifurcates into to two branches,

and finally to the western Pacific Ocean in the termi-

nating phase 8. The spatial pattern in summer differs

significantly from that in winter: the primary structure

is tilted northwest–southeast in nearly all phases in

summer, and there is northward as well as eastward

movement across the phases. Overall, the composite

structure appears to be broadly similar to those based

on the widely used RMM index (Waliser et al. 2009,

their Figs. 11 and 12).

We further test the propagation characteristics based

on the reconstructed precipitation anomalies. This is

necessary as there is no guarantee that the modes from

the multivariate EOF analysis are propagating signals

in general. Wang et al. (2018) suggested that it is useful

to cross-check the propagation with lag correlation.

Figure 9a shows the lag correlation of precipitation

anomalies averaged between 808 and 908E against

precipitation anomalies at a reference area (58–108N,

808–908E) in the boreal summer season, which iden-

tifies a coherent northward propagation. Similarly,

northward propagation can also be identified in the

South China Sea region with a reference area (58–108N,

1108–1208E). Eastward propagation is tested using two

reference areas (58S–58N 808–908E and 58S–58N, 1108–
1208E) in two seasons (Figs. 9c–f). Relatively slow

propagation (;5m s21) is found from the IndianOcean

(408E) to the western Pacific Ocean (1508E), while the

precipitation anomalies speed up the eastward propa-

gation after 1508E.

e. MJO versus BSISO in TRMM precipitation

One intriguing result of our EOF analysis is that the

fractional variance (EV) in summer is greater than that

in winter in precipitation EOFs (Fig. 2a). This implies

that the precipitation associated with the BSISO is

TABLE 1. Maximum values of the bivariate correlation co-

efficient between the daily indices for PII, OMI, and RMM during

the period from 2000 to 2014 for thewinter (Dec–Apr) and summer

(May–Sep). The time lag of the highest correlation is shown in

parentheses. Positive values mean the index in the left columns

leads that in the top row.

Dec–Apr May–Oct

PII OMI RMM PII OMI RMM

PII — 0.74 (4) 0.60 (5) — 0.88 (1) 0.55 (4)

OMI — — 0.74 (1) — — 0.67( 2)

FIG. 7. (a) Correlation between PII-1 and PII-2. (b) As in (a), but for real-time version.

1 FEBRUARY 2020 WANG 813

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:57 PM UTC



more coherent than the MJO. The seasonal contrast in

ISO was also noted in Sobel et al. (2010), which showed

that intraseasonal variance of TRMM precipitation is

much higher in boreal summer than winter. Never-

theless, this result differs from EV derived from the

EOF analysis of OLR, which shows that EV-MJO is

higher than EV-BSISO (K14 and Fig. A1). This in-

consistency might be due to the different variables used

or possibly because of the relatively shorter data length

of the TRMM-HQ data (17 years) compared to OLR

(;40 years). Here, we test whether or not the explained

variances of the BSISO or MJO change in different

decades. We perform the same local EOF analysis using

OLR from every 10 years, centering on 1985, 1990, 1995,

2000, 2005, and 2010.

Figure 10 shows that the explained variance from the

six different local EOF analyses. In all these EOF re-

sults, the first two eigenvalues or EVs are identical, and

they are much larger than the other modes, suggesting

that the 10-yr period provides sufficient samples for the

EOF analysis. The fractional explained variances as a

function of DOY differ markedly during different de-

cades: the EV peak at boreal summer (e.g., T 5 220) is

higher than the peak in winter (e.g., T 5 50) from 1980

FIG. 8. Composite of bandpass-filtered precipitation anomalies in (left) boreal winter (December to March) and

(right) boreal summer (June to September) on individual PII phases with amplitude greater than 1.2.
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to 2000, while the opposite is true from 1995 to 2010.

Comparing at T 5 220 between the top and bottom

rows of Fig. 10 indicates that BSISO EV is 0.18–0.25 in

the latter half period (i.e., the decades centered around

2000, 2005, and 2010) and below 0.15 in the first half

period. In contrast, the MJO EV (T 5 50) shows much

less variability across the decades: the MJO EV varies

from 0.15 to 0.20 through the period 1980–2015, al-

though there is some indication thatMJOEV is weaker

during the latter period. Results from the OLR data

confirm the results of precipitation in that EV in bo-

real summer is higher than in winter during the pe-

riod 2000–10.

There are several plausible explanations for the rela-

tively higher EV in the northern summer. It is likely that

the BSISO is more coherent and/or that background

noise is lower, or a combination of the two factors. We

first compute the lag correlation of bandpass-filtered

precipitation anomalies to test if intraseasonal propaga-

tion is more coherent. Figures 11a and 11b compare the

patterns of the lag correlation of OLR (averaged over

1108–1208E) against the bandpass-filtered (20–96-day)

OLR anomalies averaged in the reference area (58–
108N, 1108–1208E) in the two periods 1980–90 and

2000–10. The correlation is notably higher in the latter

period, indicating more coherent propagation during

2000–10. Lag correlation based on the reconstructed

OLR anomalies (Figs. 11c,d) is similarly more coherent

in this period. For eastward propagation, we examine

the lag correlation of OLR (averaged between 58S and

58N) against the bandpass-filtered (20–96-day) OLR

anomalies averaged in the reference area (58S–58N,

1108–1208E). Figures 11e and 11f show that the contour

for the correlation coefficient 5 0.2 in lag correlation

patterns of bandpass-filtered anomalies extends to

2008E during 2000–10, while it only extends to 1508E
during 1980–90, suggesting more coherent eastward

propagation in the later period. The slope of the lag

correlation is also less in the second period, suggesting

faster propagation. Propagation in the reconstructed

FIG. 9. Lag correlation of reconstructed and bandpass-filtered rain anomalies based on the reference areas (58–108N,

1108–1208E and 58S–58N, 1108–1208E). Dashes indicate the correlation is statistically significant at the 95% level.
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OLR fields (Figs. 11g,h) shows similar results. In con-

clusion, the above lag correlation analysis offers evidence

that decadal variation of the explained variance by

the BSISO occurs because the BSISO is more coherent

and it is less likely that it is due to decadal variation of

noises. This result is independent of the EOF analysis, as

the results hold for bandpass-filtered OLR anomalies.

f. Application to subseasonal prediction

The real-time version of PII may be applied to a

gridded precipitation forecast from numerical weather

prediction systems. In this section, we apply rPII to the

EMCWF S2S reforecast data, which are part of the

WMO/S2S database project (Vitart et al. 2017).We follow

the methodology and steps for the forecast of real-time

OMI developed inWang et al. (2019). PII and its real-time

counterpart are computed by projecting TRMM 3B42

HQprecipitation anomalies (1998 to the present) onto the

rotated EOFs described in section 3b. Precipitation

anomalies from the forecast are computed and interpo-

lated to the same 2.58 grid as these EOFs and projected

onto the rotated EOFs.

First, an example is used to illustrate how forecast

MJO rain anomalies may be diagnosed with the real-

time PII index. The case we examine is the DYNAMO

MJO case (Fig. 6). As in Wang et al. (2019), we ex-

amine the ensemble reforecast of the DYNAMOMJO

event initialized on 1 October 2011. The ECMWF

version is 1 October 2015, model cycle CY41R1.

Figure 12a shows the predicted rPII from the 11 en-

semble members (light gray) and the ensemble mean

(blue). This reforecast is initialized on 1 October 2011

and integrated for 45 days to the first two weeks of

November. rPII in both the forecasts and observations

(black) lies in phases 7 and 8 in the first 10 days

(dry conditions over the Indian Ocean). Both predicted

and observed rPIIs strengthen with amplitude greater

than 1 around the week 10–15 October. Thereafter, the

predicted and observed rPII maintained their strength

in phases 8 and 1, and further weakened in the Indian

Ocean (Fig. 12b). During later October and early No-

vember, the predicted rPII index is underestimated

compared to observation, indicating that the predicted

MJO, contrary to observations, failed to cross the Mari-

time Continent. The spatial pattern of precipitation may

also be reconstructed from rPII using the EOF patterns.

Figure 12b shows the time–latitude diagram of the re-

constructed precipitation anomalies averaged at the

equator (between 108S and 108N) for this reforecast. The

eastward propagation of dry anomalies during the first

two weeks of October and initialization of MJO con-

vection in the middle of October are largely consistent

with the real-time PII.

The prediction skill of the rPII index for multiple

forecasts may be assessed using the bivariate corre-

lation (e.g., Lin et al. 2008) for the reforecasts. Let

F and O be the forecast and the observed rPII index;

F andO are vectors with two components, rPII-1 and

FIG. 10. Explained variance of the first two EOFs as a function of DOY from the local EOF analysis applied to

OLR anomalies every 10 years.
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rPII-2, which are (F1, F2) and (O1, O2) for fore-

casts and observations, respectively. The bivariate corre-

lation skill (COR) for the MJO index is written as

COR5
�
N

i51

F
i
�O

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

jF
i
j2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

i51

jO
i
j2

s , (4)

where i denotes the index of the (re)forecasts, and N is

the total number of (re)forecasts.

Figure 13a shows the anomaly correlation skill of rPII

for N 5 4772 ECMWF reforecasts for all the seasons.

The model version of the ECMWF reforecast dataset

spans from 14 May 2015 to 28 December 2017, and the

initial time of these reforecasts range from 21May 1998 to

28December 2016. The correlation skill is;0.97 on day 0

and drops to 0.9 by day 5 and decreases afterward. The

correlation skill scales linearly with forecast leads. The

rate of skill reduction is 0.15 every 10 days; it drops to 0.6

by day 24 and 0.5 by day 31. These time leads are often

considered as a useful forecast skill measure.

FIG. 11. Lag correlation of reconstructed (RECON) and bandpass-filtered (BP) rain anomalies based on the

reference areas (58–108N, 1108–1208E and 58S–58N, 1108–1208E).
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Wang et al. (2019) also considered seasonal dependence

of the forecast skill and found that the real-time OMI

skill is higher in boreal winter than in summer. Similarly,

we evaluate the real-time PII skill separately for the

two seasons. Figure 13b shows that the rPII forecast skill

is slightly higher in summer than winter, which appears to

contradict the conclusion ofWang et al. (2019).Aplausible

explanation for this is that theMJO is more coherent from

theOLR dataset, while the BSISO is more coherent in the

TRMM precipitation dataset, which is caused by the de-

cadal variability of the BSISO activities.

One may argue that using the approximated MJO

index is overly generous to numerical models, and

so we further consider a harsher measure. Instead of

correlating with real-time PII for the evaluation of

skill, we use observed PII for validation by using PII as

Oi in Eq. (4). The black solid curve in Fig. 13a shows the

rPII-PII correlation skill as a function of forecast leads.

Because precipitation anomalies are computed differ-

ently in the forecasts and rPII is only an approximation

of PII, the rPII-PII correlation skill drops accordingly.

The correlation also scales linearly with forecast leads.

FIG. 12. (a) PII for individual ensemble members (gray), ensemble mean (blue), and observed PII (black) from

the reforecasts initialized on 1 Oct 2011, from the ECMWF reforecast. (b) Predicted precipitation anomalies

(shaded; mmday21) averaged between 108S and 108N for ECMWF and observed rain anomalies reconstructed

from PII EOFs (contours are at 25, 22, 21, 1, 2, 5mmday21; negative values are dashed).

FIG. 13. (a) Anomaly correlation forecast skill of real-time PII from the EMCWF reforecasts validated using

observed PII (black) and real-time PII (blue). (b) Anomaly correlation skill of real-time PII in boreal winter

(December to March; blue) and summer (June to September; orange).

818 JOURNAL OF CL IMATE VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:57 PM UTC



It remains high during the first few days, for example,

;0.88 at day 0, and drops to 0.6 at day 20 and 0.5 by day

25. The PII skill is about 6 days less for all the leads

compared to the correlation skill if observed rPII is used.

g. Application to the diagnosis of the MJO–QBO
connection

Here we demonstrate that PII may be used to di-

agnose tropical intraseasonal oscillations. Several au-

thors (Yoo and Son 2016; Son et al. 2017; Martin et al.

2019) have found that the MJO and stratosphere quasi-

biennial oscillation (QBO) are well correlated in the

boreal winter season, and the mean amplitude of MJO

during the QBO easterly phases (using the wind at

50 hPa as the QBO index) is significantly larger than its

westerly phase. However, Zhang and Zhang (2018,

their Fig. 1) showed that the amplitude difference is

indistinguishable in the individual MJO phases if

the RMM is used to quantify the MJO. Here, the

MJO–QBO relationship is used as an example to

demonstrate the utility of the PII index for climate

diagnosis. The QBO U50 index (the zonal-mean zonal

wind anomaly at 50hPa averaged between 108S and 108N;

available at http://www.cpc.ncep.noaa.gov/data/indices/

qbo.u50.index) is used to quantify the QBO. We composite

the PII index based on the 33.3rd and 66.7th percen-

tiles of the QBO U50 index: the QBO easterly phase

(QBOE) is defined if U50 is less than 22.37m s21; the

QBO westerly phase (QBOW) for U50 # 5.13m s21.

The MJO events are selected for the amplitude of PII

greater than 0.5. The composite results discussed below

are not sensitive to these threshold values.

Figure 14 shows the phase diagram of daily PII values

upon the QBOE and QBOW from December to March

from 1998 to 2018. The mean amplitude (bold dots)

every 248 in the PII phase space is significantly larger in

QBOE than in QBOW. The mean amplitude of PII is

;1.31 in QBOE and ;1.18 in QBOW. This example

demonstrates that the QBO exerts significant influence

on the MJO precipitation in the individual MJO phases

during the TRMM period.

4. Conclusions

Precipitation is the most impactful variable of tropical

intraseasonal variability, including both the MJO and

BSISO. Here, EOF analysis is applied to precipitation

anomalies associatedwith theMJO/BSISOusing 17 years

of TRMM high-quality precipitation product. The EOFs

are computed as a function of the day of the year using

eastward-propagating precipitation anomalies. This ap-

proach broadly follows K14 with two improvements: 1) a

super-Gaussian function is used to reduce noise, and 2)

rotation is applied to the leading EOF pairs, which allows

consistent and interpretable spatial structures across all

days of the year. These developments establish a robust

method to extract propagating signals from the noisy

precipitation data.

Our EOF analysis identifies two peaks across the year:

one in the middle of the boreal winter that explains

;21% of the total variance by the first two EOFs, cor-

responding to the MJO, and the other in the middle of

summer that explains 20% of the total variance and

corresponds to the BSISO. This result indicates that,

during the TRMM period, the BSISO is more coherent

than the MJO. Similar tests were repeated with OLR,

which has a much longer record. It is further shown that

the BSISO is much less coherent before the TRMM

period (1979–98), while the MJO shows much less de-

cadal variability. Results from the EOF analysis of

OLR confirm the conclusion from the EOF analysis of

precipitation.

The precipitation-based tropical intraseasonal oscil-

lation (PII) index is developed by projecting bandpass-

filtered precipitation anomalies to the rotated two

leading EOFs. A real-time version that approximates

PII was also developed using precipitation anomalies

without any bandpass filtering. The correlation be-

tween the two is ;0.9. Applying PII and rPII to the

MJO events observed from October to December 2011

during the DYNAMO field campaign shows that these

precipitation indices are able to capture precipitation

anomalies of these MJO events. The real-time PII is

FIG. 14. The daily PII values in the EQBO (blue) and WQBO

(orange) from December to March during 1998–2014. Bold dots

indicate the mean of PII every 248.
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used to evaluate the ECMWF reforecast of precipita-

tion associated with the MJO and BSISO from 1998 to

2016. The forecast skill measured by the maximum lead

time at which the anomaly correlation coefficient be-

tween forecasts and observations exceeds 0.6 is ;24

days, or;31 days if a 0.5 threshold is used. The forecast

skill validated with PII is;6 days less than that derived

from its real-time PII. The forecast skills between the

winter and summer seasons in the forecast period are

not significantly different, indicating a similar pre-

diction skill of theMJO/BSISO rain during the analysis

period (1996–2016).
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APPENDIX

Test of OLR-based MJO Index

a. Improve OMI with a super-Gaussian window

The OMI developed by K14 is based on the interpo-

lated OLR dataset (Liebmann and Smith 1996). OMI

has many advantages as discussed in the introduction.

One unsatisfying aspect of OMI is the noisiness in the

EOFs. Figure A1a shows that the explained vari-

ances are not smooth, which is similar to K14’s Fig. 1.

FIG. A2. OLR EOF1 andEOF2without the zonalmean. (a)Explained variance of the first twoEOFs. (b),(c) The symmetric

structures of EOF 1 and 2, respectively. (d),(e) The symmetric structures of rotated EOF1 and EOF2, respectively.
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Figures A1b and A1c illustrate the structure of the

symmetric components of EOF1 and EOF2 (averaged

between 208S and 208N) computed following K14. The

symmetric components of these EOFs are not smooth

either. There is an abrupt change of sign around DOY

305–310 and 0. To avoid this abrupt transition, K14

offers a practical solution. K14 switched the sign after the

abrupt transition and linearly interpolated themduring the

transition DOY to replace the EOFs at the transition

DOY derived from the EOF analysis. As a result of linear

interpolation, these EOFs maintain a consistent sign at all

DOY, making them interpretable in the phase space that

can be unambiguously linked to geographical regions. One

weakness of this interpolation procedure is that the in-

terpolated EOFs are not strictly orthonormal: the EOF1

and EOF2 are not strictly orthogonal, and the matrix

norm of each EOF on those days is not exactly 1, albeit the

relative error is small with the largest being ;2%. We

further test the results by taking one year out prior to the

EOF analysis, and repeat the same EOF analysis with one

year less data. Noise and the abrupt transition vary in these

tests, indicating that these features are not robust. In ad-

dition to the abrupt transition issue, the explained variance

of the first two EOFs (Fig. 1b) as a function of DOY using

the boxcar function as Fig. 1 in K14 is not smooth. The

noisiness and abrupt transition is conceptually unsatisfying

and it is desirable to have EOFs representing seasonal

transition smoothly.

Applying super-Gaussian windowing withW5 60 days

to the time series data prior to EOF yields explained

variances as a smooth function ofDOY (Fig.A1d), which

are also inseparable for half of the DOY. The symmet-

ric and antisymmetric structure of EOFs (Figs. A1e,f) are

also considerably smoother. While the EOF patterns

differ slightly because of smoothing after applying the

super-Gaussian window, applying these EOFs to fore-

cast data following Wang et al. (2019) indicates negli-

gible changes in the forecast skill, suggesting that the

noise does not compromise its application in forecasts.

We conclude that application of the super-Gaussian

window addresses these conceptual issues in OMI.

However, in practice, the original OMI is sufficient despite

the numerical imprecision discussed above.

b. OMI without the zonal mean

The OLR anomalies used for OMI include the zonal

mean component. We further take out the zonal mean

and repeat the local EOF analysis of OLR with the

super-Gaussian function, as done with precipitation

anomalies. Figure A2a shows the explained variances of

EOF1 and EOF2, which are identical and well separated

from the other modes. The symmetric structures of

EOF1 and EOF2 (Figs. A2b,d) vary rapidly because of

eigenvalue degeneracy, making it difficult to interpret.

We perform rotation to the first EOF pair for eachDOY

based on the property of eigenvalue degeneracy. After

rotation, the symmetric structures of EOF1 and EOF2

(Figs. A2b,d) show consistent patterns in the Indian

Ocean, western Pacific, and Maritime Continent re-

gions, making it appropriate for indexing the convection

associated with ISO.
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